Variables and Assignment

Last updated on 2024-10-18 | Edit this page

Overview

Questions

  • How can I store data in programs?

Objectives

  • Write programs that assign scalar values to variables and perform calculations with those values.
  • Correctly trace value changes in programs that use scalar assignment.

Use variables to store values.


  • Variables are names for values.

  • Variable names

    • can only contain letters, digits, and underscore _ (typically used to separate words in long variable names)
    • cannot start with a digit
    • are case sensitive (age, Age and AGE are three different variables)
  • The name should also be meaningful so you or another programmer know what it is

  • Variable names that start with underscores like __alistairs_real_age have a special meaning so we won’t do that until we understand the convention.

  • In Python the = symbol assigns the value on the right to the name on the left.

  • The variable is created when a value is assigned to it.

  • Here, Python assigns an age to a variable age and a name in quotes to a variable first_name.

    PYTHON

    age = 42
    first_name = 'Ahmed'

Use print to display values.


  • Python has a built-in function called print that prints things as text.
  • Call the function (i.e., tell Python to run it) by using its name.
  • Provide values to the function (i.e., the things to print) in parentheses.
  • To add a string to the printout, wrap the string in single or double quotes.
  • The values passed to the function are called arguments

PYTHON

print(first_name, 'is', age, 'years old')

OUTPUT

Ahmed is 42 years old
  • print automatically puts a single space between items to separate them.
  • And wraps around to a new line at the end.

Variables must be created before they are used.


  • If a variable doesn’t exist yet, or if the name has been mis-spelled, Python reports an error. (Unlike some languages, which “guess” a default value.)

PYTHON

print(last_name)

ERROR

---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-1-c1fbb4e96102> in <module>()
----> 1 print(last_name)

NameError: name 'last_name' is not defined
  • The last line of an error message is usually the most informative.
  • We will look at error messages in detail later.

Variables Persist Between Cells

Be aware that it is the order of execution of cells that is important in a Jupyter notebook, not the order in which they appear. Python will remember all the code that was run previously, including any variables you have defined, irrespective of the order in the notebook. Therefore if you define variables lower down the notebook and then (re)run cells further up, those defined further down will still be present. As an example, create two cells with the following content, in this order:

PYTHON

print(myval)

PYTHON

myval = 1

If you execute this in order, the first cell will give an error. However, if you run the first cell after the second cell it will print out 1. To prevent confusion, it can be helpful to use the Kernel -> Restart & Run All option which clears the interpreter and runs everything from a clean slate going top to bottom.

Variables can be used in calculations.


  • We can use variables in calculations just as if they were values.
    • Remember, we assigned the value 42 to age a few lines ago.

PYTHON

age = age + 3
print('Age in three years:', age)

OUTPUT

Age in three years: 45

Use an index to get a single character from a string.


  • The characters (individual letters, numbers, and so on) in a string are ordered. For example, the string 'AB' is not the same as 'BA'. Because of this ordering, we can treat the string as a list of characters.
  • Each position in the string (first, second, etc.) is given a number. This number is called an index or sometimes a subscript.
  • Indices are numbered from 0.
  • Use the position’s index in square brackets to get the character at that position.
A line of Python code, print(atom_name[0]), demonstrates that using the zero index will output just the initial letter, in this case ‘h’ for helium.
A line of Python code, print(atom_name[0]), demonstrates that using the zero index will output just the initial letter, in this case ‘h’ for helium.

PYTHON

atom_name = 'helium'
print(atom_name[0])

OUTPUT

h

Use a slice to get a substring.


  • A part of a string is called a substring. A substring can be as short as a single character.
  • An item in a list is called an element. Whenever we treat a string as if it were a list, the string’s elements are its individual characters.
  • A slice is a part of a string (or, more generally, a part of any list-like thing).
  • We take a slice with the notation [start:stop], where start is the integer index of the first element we want and stop is the integer index of the element just after the last element we want.
  • The difference between stop and start is the slice’s length.
  • Taking a slice does not change the contents of the original string. Instead, taking a slice returns a copy of part of the original string.

PYTHON

atom_name = 'sodium'
print(atom_name[0:3])

OUTPUT

sod

Use the built-in function len to find the length of a string.


PYTHON

print(len('helium'))

OUTPUT

6
  • Nested functions are evaluated from the inside out, like in mathematics.

Python is case-sensitive.


  • Python thinks that upper- and lower-case letters are different, so Name and name are different variables.
  • There are conventions for using upper-case letters at the start of variable names so we will use lower-case letters for now.

Use meaningful variable names.


  • Python doesn’t care what you call variables as long as they obey the rules (alphanumeric characters and the underscore).

PYTHON

flabadab = 42
ewr_422_yY = 'Ahmed'
print(ewr_422_yY, 'is', flabadab, 'years old')
  • Use meaningful variable names to help other people understand what the program does.
  • The most important “other person” is your future self.

Swapping Values

Fill the table showing the values of the variables in this program after each statement is executed.

PYTHON

# Command  # Value of x   # Value of y   # Value of swap #
x = 1.0    #              #              #               #
y = 3.0    #              #              #               #
swap = x   #              #              #               #
x = y      #              #              #               #
y = swap   #              #              #               #

OUTPUT

# Command  # Value of x   # Value of y   # Value of swap #
x = 1.0    # 1.0          # not defined  # not defined   #
y = 3.0    # 1.0          # 3.0          # not defined   #
swap = x   # 1.0          # 3.0          # 1.0           #
x = y      # 3.0          # 3.0          # 1.0           #
y = swap   # 3.0          # 1.0          # 1.0           #

These three lines exchange the values in x and y using the swap variable for temporary storage. This is a fairly common programming idiom.

Predicting Values

What is the final value of position in the program below? (Try to predict the value without running the program, then check your prediction.)

PYTHON

initial = 'left'
position = initial
initial = 'right'

PYTHON

print(position)

OUTPUT

left

The initial variable is assigned the value 'left'. In the second line, the position variable also receives the string value 'left'. In third line, the initial variable is given the value 'right', but the position variable retains its string value of 'left'.

Challenge

If you assign a = 123, what happens if you try to get the second digit of a via a[1]?

Numbers are not strings or sequences and Python will raise an error if you try to perform an index operation on a number. In the next lesson on types and type conversion we will learn more about types and how to convert between different types. If you want the Nth digit of a number you can convert it into a string using the str built-in function and then perform an index operation on that string.

PYTHON

a = 123
print(a[1])

ERROR

TypeError: 'int' object is not subscriptable

PYTHON

a = str(123)
print(a[1])

OUTPUT

2

Choosing a Name

Which is a better variable name, m, min, or minutes? Why? Hint: think about which code you would rather inherit from someone who is leaving the lab:

  1. ts = m * 60 + s
  2. tot_sec = min * 60 + sec
  3. total_seconds = minutes * 60 + seconds

minutes is better because min might mean something like “minimum” (and actually is an existing built-in function in Python that we will cover later).

Slicing practice

What does the following program print?

PYTHON

atom_name = 'carbon'
print('atom_name[1:3] is:', atom_name[1:3])

OUTPUT

atom_name[1:3] is: ar

Slicing concepts

Given the following string:

PYTHON

species_name = "Acacia buxifolia"

What would these expressions return?

  1. species_name[2:8]
  2. species_name[11:] (without a value after the colon)
  3. species_name[:4] (without a value before the colon)
  4. species_name[:] (just a colon)
  5. species_name[11:-3]
  6. species_name[-5:-3]
  7. What happens when you choose a stop value which is out of range? (i.e., try species_name[0:20] or species_name[:103])
  1. species_name[2:8] returns the substring 'acia b'
  2. species_name[11:] returns the substring 'folia', from position 11 until the end
  3. species_name[:4] returns the substring 'Acac', from the start up to but not including position 4
  4. species_name[:] returns the entire string 'Acacia buxifolia'
  5. species_name[11:-3] returns the substring 'fo', from the 11th position to the third last position
  6. species_name[-5:-3] also returns the substring 'fo', from the fifth last position to the third last
  7. If a part of the slice is out of range, the operation does not fail. species_name[0:20] gives the same result as species_name[0:], and species_name[:103] gives the same result as species_name[:]

Key Points

  • Use variables to store values.
  • Use print to display values.
  • Variables persist between cells.
  • Variables must be created before they are used.
  • Variables can be used in calculations.
  • Use an index to get a single character from a string.
  • Use a slice to get a substring.
  • Use the built-in function len to find the length of a string.
  • Python is case-sensitive.
  • Use meaningful variable names.